2000 AIME II Problems/Problem 11
Problem
The coordinates of the vertices of isosceles trapezoid are all integers, with and . The trapezoid has no horizontal or vertical sides, and and are the only parallel sides. The sum of the absolute values of all possible slopes for is , where and are relatively prime positive integers. Find .
Solution
For simplicity, we translate the points so that is on the origin and . Suppose has integer coordinates; then is a vector with integer parameters (vector knowledge is not necessary for this solution). We construct the perpendicular from to , and let be the reflection of across that perpendicular. Then is a parallelogram, and . Thus, for to have integer coordinates, it suffices to let have integer coordinates.[1]
Let the slope of the perpendicular be . Then the midpoint of lies on the line , so . Also, implies that . Combining these two equations yields
Since is an integer, then must be an integer. There are pairs of integers whose squares sum up to namely . We exclude the cases because they lead to degenerate trapezoids (rectangle, line segment, vertical and horizontal sides). Thus we have
These yield , and the sum of their absolute values is . The answer is
^ In other words, since is a parallelogram, the difference between the x-coordinates and the y-coordinates of and are, respectively, the difference between the x-coordinates and the y-coordinates of and . But since the latter are integers, then the former are integers also, so has integer coordinates iff has integer coordinates.
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.