2007 AMC 10B Problems/Problem 11

Problem

A circle passes through the three vertices of an isosceles triangle that has two sides of length $3$ and a base of length $2$. What is the area of this circle?

$\textbf{(A) } 2\pi \qquad\textbf{(B) } \frac{5}{2}\pi \qquad\textbf{(C) } \frac{81}{32}\pi \qquad\textbf{(D) } 3\pi \qquad\textbf{(E) } \frac{7}{2}\pi$

Solution

Solution 1

Let $\triangle ABC$ have vertex $A$ and center $O$, with foot of altitude from $A$ at $D$.

[asy] import olympiad; pair B=(0,0), C=(2,0), A=(1,3), D=(1,0); pair O=circumcenter(A,B,C); draw(A--B--C--A--D); draw(B--O--C); draw(circumcircle(A,B,C)); dot(O); label("\(A\)",A,N); label("\(B\)",B,S); label("\(C\)",C,S); label("\(D\)",D,S); label("\(O\)",O,W); label("\(r\)",(O+A)/2,SE); label("\(r\)",(O+B)/2,N); label("\(h\)",(O+D)/2,SE); label("\(3\)",(A+B)/2,NW); label("\(1\)",(B+D)/2,N); [/asy]

Then by Pythagorean Theorem (with radius $r$, height $OD = h$) on $\triangle OBD, ABD$ \begin{align*} h^2 + 1 & = r^2 \\ (h + r)^2 + 1 & = 9 \end{align*}

Substituting and solving gives $r = \frac {9}{4\sqrt {2}}$. Then the area of the circle is $r^2 \pi = \left(\frac {9}{4\sqrt {2}}\right)^2 \pi = \boxed{\mathrm{(C) \ } \frac {81}{32} \pi}$.

Solution 2

By $A = \frac {1}{2}Bh = \frac {abc}{4R}$ (or we could use $s = 4$ and Heron's formula), \[R = \frac {abc}{2Bh} = \frac {3 \cdot 3 \cdot 2}{2(2)(2\sqrt {2})} = \frac {9}{4\sqrt {2}}\] and the answer is $R^2 \pi = \boxed{\mathrm{(C) \ } \frac {81}{32} \pi}$

Alternatively, by the Extended Law of Sines, \[2R = \frac {AC}{\sin \angle ABC} = \frac {3}{\frac {2\sqrt {2}}{3}} \Longrightarrow R = \frac {9}{4\sqrt {2}}\] Answer follows as above.

See also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png