2013 AIME II Problems/Problem 4

Revision as of 14:44, 4 April 2013 by Lmbailey (talk | contribs) (Created page with "The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\s...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The distance from point $A$ to point $B$ is $\sqrt{13}$. The vector that starts at point A and ends at point B is given by $B - A = (1, 2\sqrt{3})$. Since the center of an equilateral triangle, $P$, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to $\overline{AB}$. The line perpendicular to $\overline{AB}$ through the midpoint, $M =  (\dfrac{3}{2},\sqrt{3})$, $\overline{AB}$ can be parameterized by $(\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})$. At this point, it is useful to note that $\Delta BMP$ is a 30-60-90 triangle with $\overline{MB}$ measuring $\dfrac{\sqrt{13}}{2}$. This yields the lenght of $\overline{MP}$ to be $\dfrac{\sqrt{13}}{2\sqrt{3}}$. Therefore, $P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})$. Therefore $xy = \dfrac{25\sqrt{3}}{12}$ yielding an answer of $p + q + r  = 25 + 3 + 12 = 040$.