2013 AMC 10B Problems/Problem 15

Revision as of 15:05, 22 February 2013 by Turkeybob777 (talk | contribs)

Problem

A wire is cut into two pieces, one of length $a$ and the other of length $b$. The piece of length $a$ is bent to form an equilateral triangle, and the piece of length $b$ is bent to form a regular hexagon. The triangle and the hexagon have equal area. What is $\frac{a}{b}$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{\sqrt{6}}{2}\qquad\textbf{(C)}\ \sqrt{3} \qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{3\sqrt{2}}{2}$

Solution

Using the formulas for area of a regular triangle $(\frac{{s}^{2}\sqrt{3}}{4})$ and regular hexagon $(\frac{3{s}^{2}\sqrt{3}}{2})$ and plugging $\frac{a}{3}$ and $\frac{b}{6}$ into each equation, you find that $\frac{{a}^{2}\sqrt{3}}{36}=\frac{{b}^{2}\sqrt{3}}{24}$. Simplifying this, you get $\frac{a}{b}=\boxed{\textbf{(B)} \frac{\sqrt{6}}{2}}$