2013 AMC 10A Problems/Problem 3

Revision as of 17:49, 7 February 2013 by Countingkg (talk | contribs)

Square $ABCD$ has side length $10$. Point $E$ is on $\overline{BC}$, and the area of $\triangle ABE$ is $40$. What is $BE$?

[asy] size(150); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((0,0)--(0,10)--(10,10)--(10,0)--(0,0)--(6,10)); dot((0,0)); dot((0,10)); dot((10,10)); dot((10,0)); dot((6,10)); label("$A$",(0,0),SW); label("$B$",(0,10),NW); label("$C$",(10,10),NE); label("$D$",(10,0),SE); label("$E$",(6,10),N);[/asy]


$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$

We know that the area of $\triangle ABC$ is equal to $\frac{AB(BE)}{2}$. Plugging in $AB=10$, we get $80 = 10BE$. Dividing, we find that $BE=8$, $\textbf{(E)}$