1998 AIME Problems/Problem 6

Revision as of 14:37, 11 August 2012 by Fro116 (talk | contribs) (Solution)

Problem

Let $A\displaystyle BCD$ be a parallelogram. Extend $\overline{DA}$ through $A$ to a point $P,$ and let $\overline{PC}$ meet $\overline{AB}$ at $Q$ and $\overline{DB}$ at $R.$ Given that $PQ = 735$ and $QR = 112,$ find $RC.$

Solution

Solution 1

AIME 1998-6.png

There are several similar triangles. $\triangle PAQ\sim \triangle PDC$, so we can write the proportion:

$\frac{AQ}{CD} = \frac{PQ}{PC} = \frac{735}{112 + 735 + RC} = \frac{735}{847 + RC}$

Also, $\triangle BRQ\sim DRC$, so:

$\frac{QR}{RC} = \frac{QB}{CD} = \frac{112}{RC} = \frac{CD - AQ}{CD} = 1 - \frac{AQ}{CD}$

$\frac{AQ}{CD} = 1 - \frac{112}{RC} = \frac{RC - 112}{RC}$

Substituting,

$\frac{AQ}{CD} = \frac{735}{847 + RC} = \frac{RC - 112}{RC}$

$735RC = (RC + 847)(RC - 112)$
$0 = RC^2 - 112\cdot847$

Thus, $RC = \sqrt{112*847} = 308$.

Solution 2

We have $\triangle BRQ\sim \triangle DRC$ so $\frac{112}{RC} = \frac{BR}{DR}$. We also have $\triangle BRC \sim \triangle DRP$ so $\frac{ RC}{847} = \frac {BR}{DR}$. Equating the two results gives $\frac{112}{RC} =  \frac{ RC}{847}$ and so $RC^2=112*847$ which solves to $RC=\boxed{308}$

See also

1998 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions