1997 USAMO Problems/Problem 5

Revision as of 16:11, 12 April 2012 by 1=2 (talk | contribs)

Problem

Prove that, for all positive real numbers $a, b, c,$

$(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5
All USAMO Problems and Solutions