1968 IMO Problems/Problem 2

Revision as of 13:05, 20 March 2012 by 1=2 (talk | contribs)

Problem

Find all natural numbers $x$ such that the product of their digits (in decimal notation) is equal to $x^2 - 10x - 22$.

Solution

Let the decimal expansion of $x$ be $\overline{d_1d_2d_3\dots d_n}$, where $d_i$ are base-10 digits. We then have that $x\geq d_1\cdot 10^{n-1}$. However, the product of the digits of $x$ is $d_1d_2d_3\dots d_n\leq d_1\cdot 10\cdot 10\dots 10=d_1\cdot 10^{n-1}$, with equality only when $x$ is a one-digit integer. Therefore the product of the digits of $x$ is always at most $x$, with equality only when $x$ is a base-10 digit. This implies that $x^2-10x-22\leq x$, so $x^2-11x-22\leq 0$. Every natural number from 1 to 12 satisfies this inequality, so we only need to check these possibilities. It is easy to rule out 1 through 11, since $x^2-10x-22<0$ for those values. However, $12^2-10\cdot 12-22=2$, which is the product of the digits of 12. Therefore $\boxed{12}$ is the only natural number with the desired properties. $\blacksquare$


See Also

1968 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions