2012 AIME I Problems/Problem 8
Problem 8
Cube labeled as shown below, has edge length
and is cut by a planing passing through vertex
and the midpoints
and
of
and
respectively. The plane divides the cube into two solids. The volume of the larger of the two solids can be written in the form
where
and
are relatively prime positive integers. Find
![[asy]import cse5; unitsize(10mm); pathpen=black; dotfactor=3; pair A = (0,0), B = (3.8,0), C = (5.876,1.564), D = (2.076,1.564), E = (0,3.8), F = (3.8,3.8), G = (5.876,5.364), H = (2.076,5.364), M = (1.9,0), N = (5.876,3.465); pair[] dotted = {A,B,C,D,E,F,G,H,M,N}; D(A--B--C--G--H--E--A); D(E--F--B); D(F--G); pathpen=dashed; D(A--D--H); D(D--C); dot(dotted); label("$A$",A,SW); label("$B$",B,S); label("$C$",C,SE); label("$D$",D,NW); label("$E$",E,W); label("$F$",F,SE); label("$G$",G,NE); label("$H$",H,NW); label("$M$",M,S); label("$N$",N,NE); [/asy]](http://latex.artofproblemsolving.com/a/f/1/af154db9d25256bd90239e9f4e37253b234659e0.png)
Solution
Define a coordinate system with at the origin and
and
on the
,
, and
axes respectively. The
and
It follows that the plane going through
and
has equation
Let
be the intersection of this plane and edge
and let
Now since
is on the plane. Also,
lies on the extensions of segments
and
so the solid
is a right triangular pyramid. Note also that pyramid
is similar to
with scale factor
and thus the volume of solid
which is one of the solids bounded by the cube and the plane, is
But the volume of
is simply the volume of a pyramid with base
and height
which is
So
Note, however, that this volume is less than
and thus this solid is the smaller of the two solids. The desired volume is then
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |