2012 AMC 10A Problems/Problem 25

Revision as of 07:25, 14 March 2012 by Lww (talk | contribs) (Solution)

Problem

Real numbers $x$, $y$, and $z$ are chosen independently and at random from the interval $[0,n]$ for some positive integer $n$. The probability that no two of $x$, $y$, and $z$ are within 1 unit of each other is greater than $\frac {1}{2}$. What is the smallest possible value of $n$?

$\textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$

Solution

Solution I:

Since $x,y,z$ are all reals lacated in $[0, n]$, the number of choices for each one is infinite.

Without loss of generality, assume that $n\geq x \geq y \geq z \geq 0$. Then the set of points $(x,y,z)$ is a tetrahedron, or a triangular pyramid. The point $(x,y,z)$ distributes uniformly in this region. If this is not easy to understand, read Solution II.

The altitude of the tetrahedron is $n$ and the base is an isosceles right triangle with a leg length $n$. The volume is $V_1=\dfrac{n^3}{6}$. As shown in the first figure in red.

[asy] import three; unitsize(10cm); size(150); currentprojection=orthographic(1/2,-1,2/3);  // three - currentprojection, orthographic draw((1,1,0)--(0,1,0)--(0,0,0),green); draw((0,0,0)--(0,0,1),green); draw((0,1,0)--(0,1,1),green); draw((1,1,0)--(1,1,1),green); //draw((1,0,0)--(1,0,1),green); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle,green);  draw((0,0,0)--(1,0,0)--(1,1,0)--(0,0,0)--(1,0,1)--(1,0,0), red); draw((1,1,0)--(1,0,1), red); [/asy]


Now we will find the region with points satisfying $|x-y|\geq1$, $|y-z|\geq1$, $|z-x|\geq1$.

Since $n\geq x \geq y \geq z \geq 0$, we have $x-y\geq1$, $y-z\geq1$, $z-x\geq1$.

The region of points $(x,y,z)$ satisfying the condition is show in the second Figure in black. It is a tetrahedron, too.

[asy] import three; unitsize(10cm); size(150); currentprojection=orthographic(1/2, -1, 2/3);  // three - currentprojection,  orthographic draw((1, 1, 0)--(0, 1, 0)--(0, 0, 0), green); draw((0, 0, 0)--(0, 0, 1), green); draw((0, 1, 0)--(0, 1, 1), green); draw((1, 1, 0)--(1, 1, 1), green); //draw((1, 0, 0)--(1, 0, 1), green); draw((0, 0, 1)--(1, 0, 1)--(1, 1, 1)--(0, 1, 1)--cycle, green);  draw((0, 0, 0)--(1, 0, 1)--(1, 1, 0)--(0, 0, 0),  dashed+red); draw((0, 0, 0)--(0.1, 0, 0),  dashed+red); draw((1, 0, 0.9)--(1, 0, 1),  dashed+red); draw((1, 0.9, 0)--(1, 1, 0),  dashed+red);   draw((0.1, 0, 0)--(1, 0, 0.9)--(1, 0.9, 0)--(0.1, 0, 0)); draw((1, 0, 0)--(0.1, 0, 0)); draw((1, 0, 0.9)--(1, 0, 0)); draw((1, 0.9, 0)--(1, 0, 0)); [/asy]

The volume of this region is $V_2=\dfrac{(n-2)^3}{6}$.

So the probability is $p=\dfrac{V_2}{V_1}=\dfrac{(n-2)^3}{n^3}$.

Substitude $n$ by the values in the choices, we will find that when $n=10$, $p=\frac{512}{1000}>\frac{1}{2}$, when $n=9$, $p=\frac{343}{729}<\frac{1}{2}$. So $n\geq 10$, the answer is $(\text{D})$.


Solution II:

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions