1950 AHSME Problems/Problem 38

Revision as of 19:49, 8 December 2011 by Yankeesfan (talk | contribs) (Created page with "== Problem== If the expression <math> \begin{pmatrix}a & c\\ d & b\end{pmatrix} </math> has the value <math>ab-cd</math> for all values of <math>a, b, c</math> and <math>d</math...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If the expression $\begin{pmatrix}a & c\\ d & b\end{pmatrix}$ has the value $ab-cd$ for all values of $a, b, c$ and $d$, then the equation $\begin{pmatrix}2x & 1\\ x & x\end{pmatrix}= 3$:

$\textbf{(A)}\ \text{Is satisfied for only 1 value of }x\qquad\\ \textbf{(B)}\ \text{Is satisified for only 2 values of }x\qquad\\ \textbf{(C)}\ \text{Is satisified for no values of }x\qquad\\ \textbf{(D)}\ \text{Is satisfied for an infinite number of values of }x\qquad\\ \textbf{(E)}\ \text{None of these.}$

Solution

By $\begin{pmatrix}a & c\\ d & b\end{pmatrix}=ab-cd$, we have $2x^2-x=3$. Subtracting $3$ from both sides, giving $2x^2-x-3=0$. This factors to $(2x-3)(x+1)=0$. Thus, $x=\dfrac{3}{2},-1$, so the equation is $\boxed{\textbf{(B)}\ \text{satisified for only 2 values of }x}$.

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 37
Followed by
Problem 39
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions