2010 AMC 10B Problems/Problem 21

Revision as of 19:40, 5 October 2011 by Draco (talk | contribs)

Problem 21

A palindrome between $1000$ and $10,000$ is chosen at random. What is the probability that it is divisible by $7$?

$\textbf{(A)}\ \dfrac{1}{10} \qquad \textbf{(B)}\ \dfrac{1}{9} \qquad \textbf{(C)}\ \dfrac{1}{7} \qquad \textbf{(D)}\ \dfrac{1}{6} \qquad \textbf{(E)}\ \dfrac{1}{5}$

Solution

View the palindrome as some number with form (decimal representation): $a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$. But because the number is a palindrome, $a_3 = a_0, a_2 = a_1$. Recombining this yields $1001a_3 + 110a_2$. 1001 is divisible by 7, which means that as long as $a_2 = 0$, the palindrome will be divisible by 7. This yields 9 palindromes out of 90 ($9 \cdot 10$) possibilities for palindromes. However, if $a_2 = 7$, then this gives another case in which the palindrome is divisible by 7. This adds another 9 palindromes to the list, bringing our total to $18/90 = \boxed {\frac{1}{5} } = \boxed {E}$


See also

2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions