TRAIN FOR THE AMC 8 WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

2008 AMC 8

Revision as of 12:00, 14 August 2011 by Mrdavid445 (talk | contribs) (Created page with "==Problem 1== Susan had <math>$50</math> to spend at the carnival. She spent <math>$12</math> on food and twice as much on rides. How many dollars did she have left to ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1

Susan had $&#036;50$ to spend at the carnival. She spent $&#036;12$ on food and twice as much on rides. How many dollars did she have left to spend?

$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 38 \qquad \textbf{(E)}\ 50$

Problem 2

The ten-letter code $\text{BEST OF LUCK}$ represents the ten digits $0-9$, in order. What 4-digit number is represented by the code word $\text{CLUE}$?

$\textbf{(A)}\ 8671 \qquad \textbf{(B)}\ 8672 \qquad \textbf{(C)}\ 9781 \qquad \textbf{(D)}\ 9782 \qquad \textbf{(E)}\ 9872$

Problem 3

If February is a month that contains Friday the $13^{\text{th}}$, what day of the week is February 1?

$\textbf{(A)}\ \text{Sunday} \qquad \textbf{(B)}\ \text{Monday} \qquad \textbf{(C)}\ \text{Wednesday} \qquad \textbf{(D)}\ \text{Thursday}\qquad \textbf{(E)}\ \text{Saturday}$

Problem 4

In the figure, the outer equilateral triangle has area $16$, the inner equilateral triangle has area $1$, and the three trapezoids are congruent. What is the area of one of the trapezoids? [asy] size((70)); draw((0,0)--(7.5,13)--(15,0)--(0,0)); draw((1.88,3.25)--(9.45,3.25)); draw((11.2,0)--(7.5,6.5)); draw((9.4,9.7)--(5.6,3.25)); [/asy] $\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad  \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$

Problem 5

Barney Schwinn notices that the odometer on his bicycle reads $1441$, a palindrome, because it reads the same forward and backward. After riding $4$ more hours that day and $6$ the next, he notices that the odometer shows another palindrome, $1661$. What was his average speed in miles per hour?

$\textbf{(A)}\ 15\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 20\qquad \textbf{(E)}\ 22$

Problem 6

In the figure, what is the ratio of the area of the gray squares to the area of the white squares? [asy] size((70)); draw((10,0)--(0,10)--(-10,0)--(0,-10)--(10,0)); draw((-2.5,-7.5)--(7.5,2.5)); draw((-5,-5)--(5,5)); draw((-7.5,-2.5)--(2.5,7.5)); draw((-7.5,2.5)--(2.5,-7.5)); draw((-5,5)--(5,-5)); draw((-2.5,7.5)--(7.5,-2.5)); fill((-10,0)--(-7.5,2.5)--(-5,0)--(-7.5,-2.5)--cycle, gray); fill((-5,0)--(0,5)--(5,0)--(0,-5)--cycle, gray); fill((5,0)--(7.5,2.5)--(10,0)--(7.5,-2.5)--cycle, gray); [/asy] $\textbf{(A)}\ 3:10 \qquad\textbf{(B)}\ 3:8 \qquad\textbf{(C)}\ 3:7 \qquad\textbf{(D)}\ 3:5 \qquad\textbf{(E)}\ 1:1$

Problem 7

If $\frac{3}{5}=\frac{M}{45}=\frac{60}{N}$, what is $M+N$?

$\textbf{(A)}\ 27\qquad \textbf{(B)}\ 29 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 105\qquad \textbf{(E)}\ 127$

Problem 8

Candy sales from the Boosters Club from January through April are shown. What were the average sales per month in dollars?

draw((0,0)--(36,0)--(36,24)--(0,24)--cycle);
draw((0,4)--(36,4));
draw((0,8)--(36,8));
draw((0,12)--(36,12));
draw((0,16)--(36,16));
draw((0,20)--(36,20));
fill((4,0)--(8,0)--(8,20)--(4,20)--cycle, black);
fill((12,0)--(16,0)--(16,12)--(12,12)--cycle, black);
fill((20,0)--(24,0)--(24,8)--(20,8)--cycle, black);
fill((28,0)--(32,0)--(32,24)--(28,24)--cycle, black);
label("$120", (0,24), W);
label("$80", (0,16), W);
label("$40", (0,8), W);
label("Jan", (6,0), S);
label("Feb", (14,0), S);
label("Mar", (22,0), S);
label("Apr", (30,0), S);
<\asy>
$ \textbf{(A)}\ 60\qquad\textbf{(B)}\ 70\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 80\qquad\textbf{(E)}\ 85 $

==Problem 9==
In $2005$ Tycoon Tammy invested $$100$ for two years. During the the first year
her investment suffered a $15\%$ loss, but during the second year the remaining
investment showed a $20\%$ gain. Over the two-year period, what was the change
in Tammy's investment?

$\textbf{(A)}\  5\%\text{ loss}\qquad
\textbf{(B)}\ 2\%\text{ loss}\qquad
\textbf{(C)}\ 1\%\text{ gain}\qquad
\textbf{(D)}\ 2\% \text{ gain} \qquad
\textbf{(E)}\  5\%\text{ gain}$

==Problem 10==
The average age of the $6$ people in Room A is $40$. The average age of the $4$ people in Room B is $25$. If the two groups are combined, what is the average age of all the people?

$\textbf{(A)}\ 32.5 \qquad
\textbf{(B)}\ 33 \qquad
\textbf{(C)}\ 33.5 \qquad
\textbf{(D)}\ 34\qquad
\textbf{(E)}\ 35$

==Problem 11==
Each of the $39$ students in the eighth grade at Lincoln Middle School has one dog or one cat or both a dog and a cat. Twenty students have a dog and $26$ students have a cat. How many students have both a dog and a cat?

$\textbf{(A)}\ 7\qquad
\textbf{(B)}\ 13\qquad
\textbf{(C)}\ 19\qquad
\textbf{(D)}\ 39\qquad
\textbf{(E)}\ 46$

==Problem 12==
A ball is dropped from a height of $3$ meters. On its first bounce it rises to a height of $2$ meters. It keeps falling and bouncing to $\frac{2}{3}$ of the height it reached in the previous bounce. On which bounce will it not rise to a height of $0.5$ meters?
$\textbf{(A)}\  3 \qquad
\textbf{(B)}\  4 \qquad
\textbf{(C)}\ 5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 7$

==Problem 13==
Mr. Harman needs to know the combined weight in pounds of three boxes he wants to mail. However, the only available scale is not accurate for weights less than $100$ pounds or more than $150$ pounds. So the boxes are weighed in pairs in every possible way. The results are $122$, $125$ and $127$ pounds. What is the combined weight in pounds of the three boxes?

$\textbf{(A)}\ 160\qquad
\textbf{(B)}\ 170\qquad
\textbf{(C)}\ 187\qquad
\textbf{(D)}\ 195\qquad
\textbf{(E)}\ 354$

==Problem 14==
Three $\text{A's}$, three $\text{B's}$, and three $\text{C's}$ are placed in the nine spaces so that each row and column contain one of each letter. If $\text{A}$ is placed in the upper left corner, how many arrangements are possible?
<asy>
size((80));
draw((0,0)--(9,0)--(9,9)--(0,9)--(0,0));
draw((3,0)--(3,9));
draw((6,0)--(6,9));
draw((0,3)--(9,3));
draw((0,6)--(9,6));
label("A", (1.5,7.5));
 (Error making remote request. Unknown error_msg)

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6$

Problem 15

In Theresa's first $8$ basketball games, she scored $7, 4, 3, 6, 8, 3, 1$ and $5$ points. In her ninth game, she scored fewer than $10$ points and her points-per-game average for the nine games was an integer. Similarly in her tenth game, she scored fewer than $10$ points and her points-per-game average for the $10$ games was also an integer. What is the product of the number of points she scored in the ninth and tenth games?

$\textbf{(A)}\ 35\qquad \textbf{(B)}\ 40\qquad \textbf{(C)}\ 48\qquad \textbf{(D)}\ 56\qquad \textbf{(E)}\ 72$

Problem 16

A shape is created by joining seven unit cubes, as shown. What is the ratio of the volume in cubic units to the surface area in square units?

[asy] import three; defaultpen(linewidth(0.8)); real r=0.5; currentprojection=orthographic(1,1/2,1/4); draw(unitcube, white, thick(), nolight); draw(shift(1,0,0)*unitcube, white, thick(), nolight); draw(shift(1,-1,0)*unitcube, white, thick(), nolight); draw(shift(1,0,-1)*unitcube, white, thick(), nolight); draw(shift(2,0,0)*unitcube, white, thick(), nolight); draw(shift(1,1,0)*unitcube, white, thick(), nolight); draw(shift(1,0,1)*unitcube, white, thick(), nolight);[/asy]

$\textbf{(A)} \:1 : 6 \qquad\textbf{ (B)}\: 7 : 36 \qquad\textbf{(C)}\: 1 : 5 \qquad\textbf{(D)}\: 7 : 30\qquad\textbf{ (E)}\: 6 : 25$

Problem 17

Ms.Osborne asks each student in her class to draw a rectangle with integer side lengths and a perimeter of $50$ units. All of her students calculate the area of the rectangle they draw. What is the difference between the largest and smallest possible areas of the rectangles?

$\textbf{(A)}\ 76\qquad \textbf{(B)}\ 120\qquad \textbf{(C)}\ 128\qquad \textbf{(D)}\ 132\qquad \textbf{(E)}\ 136$

Problem 18

Two circles that share the same center have radii $10$ meters and $20$ meters. An aardvark runs along the path shown, starting at $A$ and ending at $K$. How many meters does the aardvark run? [asy] size((150)); draw((10,0)..(0,10)..(-10,0)..(0,-10)..cycle); draw((20,0)..(0,20)..(-20,0)..(0,-20)..cycle); draw((20,0)--(-20,0)); draw((0,20)--(0,-20)); draw((-2,21.5)..(-15.4, 15.4)..(-22,0), EndArrow); draw((-18,1)--(-12, 1), EndArrow); draw((-12,0)..(-8.3,-8.3)..(0,-12), EndArrow); draw((1,-9)--(1,9), EndArrow); draw((0,12)..(8.3, 8.3)..(12,0), EndArrow); draw((12,-1)--(18,-1), EndArrow); label("$A$", (0,20), N); label("$K$", (20,0), E); [/asy] $\textbf{(A)}\ 10\pi+20\qquad\textbf{(B)}\ 10\pi+30\qquad\textbf{(C)}\ 10\pi+40\qquad\textbf{(D)}\ 20\pi+20\qquad \\ \textbf{(E)}\ 20\pi+40$

Problem 19

Eight points are spaced around at intervals of one unit around a $2 \times 2$ square, as shown. Two of the $8$ points are chosen at random. What is the probability that the two points are one unit apart? [asy] size((50)); dot((5,0)); dot((5,5)); dot((0,5)); dot((-5,5)); dot((-5,0)); dot((-5,-5)); dot((0,-5)); dot((5,-5)); [/asy] $\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{2}{7}\qquad\textbf{(C)}\ \frac{4}{11}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{4}{7}$

Problem 20

The students in Mr. Neatkin's class took a penmanship test. Two-thirds of the boys and $\frac{3}{4}$ of the girls passed the test, and an equal number of boys and girls passed the test. What is the minimum possible number of students in the class?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 17\qquad \textbf{(C)}\ 24\qquad \textbf{(D)}\ 27\qquad \textbf{(E)}\ 36$

Problem 21

Jerry cuts a wedge from a $6$-cm cylinder of bologna as shown by the dashed curve. Which answer choice is closest to the volume of his wedge in cubic centimeters? [asy] defaultpen(linewidth(0.65)); real d=90-63.43494882; draw(ellipse((origin), 2, 4)); fill((0,4)--(0,-4)--(-8,-4)--(-8,4)--cycle, white); draw(ellipse((-4,0), 2, 4)); draw((0,4)--(-4,4)); draw((0,-4)--(-4,-4)); draw(shift(-2,0)*rotate(-d-5)*ellipse(origin, 1.82, 4.56), linetype("10 10")); draw((-4,4)--(-8,4), dashed); draw((-4,-4)--(-8,-4), dashed); draw((-4,4.3)--(-4,5)); draw((0,4.3)--(0,5)); draw((-7,4)--(-7,-4), Arrows(5)); draw((-4,4.7)--(0,4.7), Arrows(5)); label("$8$ cm", (-7,0), W); label("$6$ cm", (-2,4.7), N);[/asy]

$\textbf{(A)} 48 \qquad \textbf{(B)} 75 \qquad \textbf{(C)}151\qquad \textbf{(D)}192 \qquad \textbf{(E)}603$

Problem 22

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Problem 23

In square $ABCE$, $AF=2FE$ and $CD=2DE$. What is the ratio of the area of $\triangle BFD$ to the area of square $ABCE$? [asy] size((100)); draw((0,0)--(9,0)--(9,9)--(0,9)--cycle); draw((3,0)--(9,9)--(0,3)--cycle); dot((3,0)); dot((0,3)); dot((9,9)); dot((0,0)); dot((9,0)); dot((0,9)); label("$A$", (0,9), NW); label("$B$", (9,9), NE); label("$C$", (9,0), SE); label("$D$", (3,0), S); label("$E$", (0,0), SW); label("$F$", (0,3), W); [/asy] $\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20}$

Problem 24

Ten tiles numbered $1$ through $10$ are turned face down. One tile is turned up at random, and a die is rolled. What is the probability that the product of the numbers on the tile and the die will be a square?

$\textbf{(A)}\ \frac{1}{10}\qquad \textbf{(B)}\ \frac{1}{6}\qquad \textbf{(C)}\ \frac{11}{60}\qquad \textbf{(D)}\ \frac{1}{5}\qquad \textbf{(E)}\ \frac{7}{30}$

Problem 25

Margie's winning art design is shown. The smallest circle has radius 2 inches, with each successive circle's radius increasing by 2 inches. Approximately what percent of the design is black?

[asy] real d=320; pair O=origin; pair P=O+8*dir(d); pair A0 = origin; pair A1 = O+1*dir(d); pair A2 = O+2*dir(d); pair A3 = O+3*dir(d); pair A4 = O+4*dir(d); pair A5 = O+5*dir(d); filldraw(Circle(A0, 6), white, black); filldraw(circle(A1, 5), black, black); filldraw(circle(A2, 4), white, black); filldraw(circle(A3, 3), black, black); filldraw(circle(A4, 2), white, black); filldraw(circle(A5, 1), black, black); [/asy] $\textbf{(A)}\ 42\qquad \textbf{(B)}\ 44\qquad \textbf{(C)}\ 45\qquad \textbf{(D)}\ 46\qquad \textbf{(E)}\ 48\qquad$