1996 AJHSME Problems/Problem 24

Revision as of 18:32, 1 August 2011 by Talkinaway (talk | contribs) (Created page with "==Problem== The measure of angle <math>ABC</math> is <math>50^\circ </math>, <math>\overline{AD}</math> bisects angle <math>BAC</math>, and <math>\overline{DC}</math> bisects an...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The measure of angle $ABC$ is $50^\circ$, $\overline{AD}$ bisects angle $BAC$, and $\overline{DC}$ bisects angle $BCA$. The measure of angle $ADC$ is

[asy] pair A,B,C,D; A = (0,0); B = (9,10); C = (10,0); D = (6.66,3); dot(A); dot(B); dot(C); dot(D); draw(A--B--C--cycle); draw(A--D--C);  label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); label("$D$",D,N); label("$50^\circ $",(9.4,8.8),SW); [/asy]

$\text{(A)}\ 90^\circ \qquad \text{(B)}\ 100^\circ \qquad \text{(C)}\ 115^\circ \qquad \text{(D)}\ 122.5^\circ \qquad \text{(E)}\ 125^\circ$

Solution

Let $\angle CAD = \angle BAD = x$, and let $\angle ACD = \angle BCD = y$

From $\triangle ABC$, we know that $50 + 2x + 2y = 180$, leading to $x + y = 65$.

From $\triangle ADC$, we know that $x + y + \angle D = 180$. Plugging in $x + y = 65$, we get $\angle D = 180 - 65 = 115$, which is answer $\boxed{C}$.

See Also

1996 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions