1987 USAMO Problems
Problem 1
Find all solutions to , where m and n are non-zero integers.
Problem 2
The feet of the angle bisectors of form a right-angled triangle. If the right-angle is at , where is the bisector of , find all possible values for .
Problem 3
is the smallest set of polynomials such that:
1. belongs to . 2. If belongs to , then and both belong to .
Show that if and are distinct elements of , then for any .
Problem 4
M is the midpoint of XY. The points P and Q lie on a line through Y on opposite sides of Y, such that and . For what value of is a minimum?
Problem 5
is a sequence of 0's and 1's. T is the number of triples with which are not equal to (0, 1, 0) or (1, 0, 1). For , is the number of with plus the number of with . Show that . If n is odd, what is the smallest value of T?