2002 AMC 10B Problems/Problem 22

Revision as of 14:46, 4 June 2011 by Gina (talk | contribs)

Problem 22

Let $\triangle{XOY}$ be a right-triangle with $m\angle{XOY}=90^\circ$. Let $M$ and $N$ be the midpoints of the legs $OX$ and $OY$, respectively. Given $XN=19$ and $YM=22$, find $XY$.

$\mathrm{(A) \ } 24\qquad \mathrm{(B) \ } 26\qquad \mathrm{(C) \ } 28\qquad \mathrm{(D) \ } 30\qquad \mathrm{(E) \ } 32$

Solution

Let $OM=MX=x$ and $ON=NY=y$. By the Pythagorean Theorem, $x^2+4y^2=484$ and $4x^2+y^2=361$ We wish to find $\sqrt{4x^2+4y^2}$. So, we add the two equations, multiply by $\frac{4}{5}$, and take the square root. \begin{align*} 5x^2+5y^2&=845\\ 4x^2+4y^2&=676\\ \sqrt{4x^2+4y^2}&=\boxed{\mathrm{(B) \ } 26} \end{align*}