2011 AIME I Problems/Problem 3
Problem
Let be the line with slope
that contains the point
, and let
be the line perpendicular to line
that contains the point
. The original coordinate axes are erased, and line
is made the
-axis and line
the
-axis. In the new coordinate system, point
is on the positive
-axis, and point
is on the positive
-axis. The point
with coordinates
in the original system has coordinates
in the new coordinate system. Find
.
Solution
Given that has slope
and contains the point
, we may write the point-slope equation for
as
.
Since
is perpendicular to
and contains the point
, we have that the slope of
is
, and consequently that the point-slope equation for
is
.
Converting both equations to the form , we have that
has the equation
and that
has the equation
.
Applying the point-to-line distance formula, $\frac{\abs{Ax+By+C}}{\sqrt{A^2+B^2}}$ (Error compiling LaTeX. Unknown error_msg), to point
and lines
and
, we find that the distance from
to
and
are
and
, respectively.
Since and
lie on the positive axes of the shifted coordinate plane, we may show by graphing the given system that point P will lie in the second quadrant in the new coordinate system. Therefore, the abscissa of
is negative, and is therefore
; similarly, the ordinate of
is positive and is therefore
.
Thus, we have that and that
. It follows that
.