2006 AMC 12B Problems/Problem 10

Revision as of 09:54, 26 February 2011 by Dor1997 (talk | contribs) (Solution)

This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.

Problem

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle? $\text {(A) } 43 \qquad \text {(B) } 44 \qquad \text {(C) } 45 \qquad \text {(D) } 46 \qquad \text {(E) } 47$

Solution

\[\text {(A) } 43\\\] If the second size has length x, then the first side has length 3x, and we have the third side which has length 15. By the triangle inequality, we have: \[\\ x+15>3x \Rightarrow 2x<15 \Rightarrow x<7.5 \\\] Now, since we want the greatest perimeter, we want the greatest integer x, and if $x<7.5$ then $x=7$. Then, the first side has length $3*7=21$, the second side has length $7$, the third side has length $15$, and so the perimeter is $21+7+15=43$.

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions