2010 AMC 12B Problems/Problem 14

Revision as of 16:18, 12 July 2010 by Lg5293 (talk | contribs) (Created page with '== Problem 14 == Let <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, and <math>e</math> be postive integers with <math>a+b+c+d+e=2010</math> and let <math>M</math…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 14

Let $a$, $b$, $c$, $d$, and $e$ be postive integers with $a+b+c+d+e=2010$ and let $M$ be the largest of the sum $a+b$, $b+c$, $c+d$ and $d+e$. What is the smallest possible value of $M$?

$\textbf{(A)}\ 670 \qquad \textbf{(B)}\ 671 \qquad \textbf{(C)}\ 802 \qquad \textbf{(D)}\ 803 \qquad \textbf{(E)}\ 804$

Solution

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions