1992 AIME Problems/Problem 8

Revision as of 21:23, 15 March 2009 by Boo (talk | contribs)

Problem

For any sequence of real numbers $A=(a_1,a_2,a_3,\ldots)$, define $\Delta A^{}_{}$ to be the sequence $(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)$, whose $n^\mbox{th}_{}$ (Error compiling LaTeX. Unknown error_msg) term is $a_{n+1}-a_n^{}$. Suppose that all of the terms of the sequence $\Delta(\Delta A^{}_{})$ are $1^{}_{}$, and that $a_{19}=a_{92}^{}=0$. Find $a_1^{}$.

Solution

Since the second differences are all $1$ and $a_{19}=a_{92}^{}=0$, $a_n$ can be expressed explicitly by the quadratic: $a_n=\frac{1}{2!}(n-19)(n-92)$.

Thus, $a_1=\frac{1}{2!}(1-19)(1-92)=\boxed{819}$.

Alternate Solution

Note that in every sequence of $a_i$, $a_n=\binom{n-1}{1}\Delta a_n + \binom{n-1}{2}\Delta^2 a_n +\binom{n-1}{3}\Delta^3 a_n + ...$

Then $a_n=a_1 +\binom{n-1}{1}\Delta a_1 +\binom{n-1}{2}\Delta^2 a_1 +\binom{n-1}{3}\Delta^3 a_1 + ...$

Since $\Delta a_1 =a_2 -a_1$, $a_n=a_1 +\binom{n-1}{1}(a_2-a_1) +\binom{n-1}{2}\cdot 1=a_1 +n(a_2-a_1) +\binom{n-1}{2}$

$a_{19}=0=a_1+18(a_2-a_1)+\binom{18}{2}=18a_2-17a_1+153$

$a_{92}=0=a_1+91(a_2-a_1)+\binom{91}{2}=91a_2-90a_1+4095$

Solving, $a_1=\boxed{819}$

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions