1987 AJHSME Problems/Problem 20

Revision as of 07:59, 14 March 2009 by 5849206328x (talk | contribs) (New page: ==Problem== "If a whole number <math>n</math> is not prime, then the whole number <math>n-2</math> is not prime." A value of <math>n</math> which shows this statement to be false is <mat...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

"If a whole number $n$ is not prime, then the whole number $n-2$ is not prime." A value of $n$ which shows this statement to be false is

$\text{(A)}\ 9 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 13 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 23$

Solution

To show this statement to be false, we need a non-prime value of $n$ such that $n-2$ is prime. Since $13$ and $23$ are prime, they won't prove anything relating to the truth of the statement.

Now we just check the statement for $n=9,12,16$. If $n=12$ or $n=16$, then $n-2$ is $10$ or $14$, which aren't prime. However, $n=9$ makes $n-2=7$, which is prime, so $n=9$ proves the statement false.

$\boxed{\text{A}}$

See Also

1987 AJHSME Problems