2002 AIME I Problems/Problem 13
Problem
In triangle the medians
and
have lengths
and
, respectively, and
. Extend
to intersect the circumcircle of
at
. The area of triangle
is
, where
and
are positive integers and
is not divisible by the square of any prime. Find
.
Solution
![[asy] size(150); pathpen = linewidth(0.7); pointpen = black; pen f = fontsize(8); pair A=(0,0), B=(24,0), E=(A+B)/2, C=IP(CR(A,3*70^.5),CR(E,27)), D=(B+C)/2, F=IP(circumcircle(A,B,C),E--C+2*(E-C)); D(D(MP("A",A))--D(MP("B",B))--D(MP("C",C,NW))--cycle); D(circumcircle(A,B,C)); D(MP("F",F)); D(A--D); D(C--F); D(A--F--B); D(MP("E",E,NE)); D(MP("D",D,NE)); MP("12",(A+E)/2,SE,f);MP("12",(B+E)/2,f); MP("27",(C+E)/2,SW,f); MP("18",(A+D)/2,SE,f); [/asy]](http://latex.artofproblemsolving.com/2/3/6/236d2c7ecccc097482080a6f0ffbf91d00c72995.png)
Applying Stewart's Theorem to medians , we have:
Substituting the first equation into the second and simplification yields
.
By the Power of a Point Theorem on , we get
. The Law of Cosines on
gives
Hence . Because
have the same height and equal bases, they have the same area, and
, and the answer is
.
See also
2002 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |