2009 AMC 10B Problems/Problem 22

Revision as of 10:09, 10 March 2009 by Misof (talk | contribs) (New page: == Problem == A cubical cake with edge length <math>2</math> inches is iced on the sides and the top. It is cut vertically into three pieces as shown in this top view, where <math>M</math...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A cubical cake with edge length $2$ inches is iced on the sides and the top. It is cut vertically into three pieces as shown in this top view, where $M$ is the midpoint of a top edge. The piece whose top is triangle $B$ contains $c$ cubic inches of cake and $s$ square inches of icing. What is $c+s$?

[asy] unitsize(1cm); defaultpen(linewidth(.8pt)+fontsize(8pt));  draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle); draw((1,1)--(-1,0)); pair P=foot((1,-1),(1,1),(-1,0)); draw((1,-1)--P); draw(rightanglemark((-1,0),P,(1,-1),4));  label("$M$",(-1,0),W); label("$C$",(-0.1,-0.3)); label("$A$",(-0.4,0.7)); label("$B$",(0.7,0.4)); [/asy]

$\text{(A) } \frac{24}{5} \qquad \text{(B) } \frac{32}{5} \qquad \text{(C) } 8+\sqrt5 \qquad \text{(D) } 5+\frac{16\sqrt5}{5} \qquad \text{(E) } 10+5\sqrt5$

Solution

[asy] unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt));  draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle); draw((1,1)--(-1,0)); pair P=foot((1,-1),(1,1),(-1,0)); draw((1,-1)--P); draw(rightanglemark((-1,0),P,(1,-1),4));  label("$M$",(-1,0),W); label("$C$",(-0.1,-0.3)); label("$A$",(-0.4,0.7)); label("$B$",(0.7,0.4)); label("$P$",(-1,1),NW); label("$Q$",(1,1),NE); label("$R$",(1,-1),SE); label("$S$",(-1,-1),SW); label("$N$",P,NW); [/asy]

Let's label the points as in the picture above. Let $[RNQ]$ be the area of $\triangle RNQ$. Then the volume of the corresponding piece is $c=2[RNQ]$. This cake piece has icing on the top and on the vertical side that contains the edge $QR$. Hence the total area with icing is $[RNQ]+2^2 = [RNQ]+4$. Thus the answer to our problem is $3[RNQ]+4$, and all we have to do now is to determine $[RNQ]$.

Introduce a coordinate system where $Q=(0,0)$, $P=(2,0)$ and $R=(0,2)$.

In this coordinate system we have $M=(2,1)$, and the line $QM$ has the equation $2y-x=0$.

As the line $RN$ is orthogonal to $QM$, it must have the equation $y+2x+c=0$ for some suitable constant $c$. As this line contains the point $R=(0,2)$, we have $c=-2$.

Substituting $x=2y$ into $y+2x-2=0$, we get $y=\frac 25$, and then $x=\frac 45$.

We can note that in $\triangle RNQ$ $x$ is the height from $N$ onto $RQ$, hence its area is $[RNQ] = \frac{x \cdot RQ} 2 = \frac{2x}2 = x = \frac 45$, and therefore the answer is $3[RNQ]+4 = 3\cdot \frac 45 + 4 = \boxed{\frac{32}5}$.

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions