2009 AMC 10A Problems/Problem 24
Problem
Three distinct vertices of a cube are chosen at random. What is the probability that the plane determined by these three vertices contains points inside the cube?
Solution
We will try to use symmetry as much as possible.
Pick the first vertex , its choice clearly does not influence anything.
Pick the second vertex . With probability vertices and have a common edge, with probability they are in opposite corners of the same face, and with probability they are in opposite corners of the cube. We will handle each of the cases separately.
In the first case, there are faces that contain the edge . In each of these faces there are other vertices. If one of these vertices is the third vertex , the entire triangle will be on a face. On the other hand, if is one of the two remaining vertices, the triangle will contain points inside the cube. Hence in this case the probability of choosing a good is .
In the second case, the triangle will not intersect the cube iff point is one of the two points on the side that contains . Hence the probability of intersecting the inside of the cube is .
In the third case, already the diagonal contains points inside the cube, hence this case will be good regardless of the choice of .
Summing up all cases, the resulting probability is:
See Also
2009 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |