2009 AMC 12A Problems/Problem 14

Revision as of 14:26, 12 February 2009 by Misof (talk | contribs) (New page: == Problem == A triangle has vertices <math>(0,0)</math>, <math>(1,1)</math>, and <math>(6m,0)</math>, and the line <math>y = mx</math> divides the triangle into two triangles of equal ar...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A triangle has vertices $(0,0)$, $(1,1)$, and $(6m,0)$, and the line $y = mx$ divides the triangle into two triangles of equal area. What is the sum of all possible values of $m$?

$\textbf{(A)} - \!\frac {1}{3} \qquad \textbf{(B)} - \!\frac {1}{6} \qquad \textbf{(C)}\ \frac {1}{6} \qquad \textbf{(D)}\ \frac {1}{3} \qquad \textbf{(E)}\ \frac {1}{2}$

Solution

Let's label the three points as $A=(0,0)$, $B=(1,1)$, and $C=(6m,0)$.

Clearly, whenever the line $y=mx$ intersects the inside of the triangle, it will intersect the side $BC$. Let $D$ be the point of intersection.

The triangles $ABD$ and $ACD$ have the same height, which is the distance between the point $A$ and the line $BC$. Hence they have equal areas if and only if $D$ is the midpoint of $BC$.

The midpoint of the segment $BC$ has coordinates $\left( \frac{6m+1}2, \frac 12 \right)$. This point lies on the line $y=mx$ if and only if $\frac 12 = m \cdot \frac{6m+1}2$. This simplifies to $6m^2 + m - 1 = 0$. This is a quadratic equation with roots $m=\frac 13$ and $m=-\frac 12$. Both roots represent valid solutions, and their sum is $\frac 13 - \frac 12 = \boxed{-\frac 16}$.

For illustration, below are pictures of the situation for $m=1.5$, $m=0.5$, $m=1/3$, and $m=-1/2$.

[asy] unitsize(1cm); defaultpen(0.8); real m=1.5; draw( (0,0)--(1,1)--(6*m,0)--cycle ); draw( ((-0.5)*(1,m)) -- ((1.5)*(1,m)), dashed ); label("$A$",(0,0),NW); label("$B$",(1,1),NE); label("$C$",(6*m,0),E); [/asy]

[asy] unitsize(2cm); defaultpen(0.8); real m=0.5; draw( (0,0)--(1,1)--(6*m,0)--cycle ); draw( ((-1)*(1,m)) -- (3*(1,m)), dashed ); label("$A$",(0,0),NW); label("$B$",(1,1),N); label("$C$",(6*m,0),E); pair D = intersectionpoint( (1,1)--(6*m,0), ((-1)*(1,m)) -- (3*(1,m)) ); dot(D); label("$D$",D,S); [/asy]

[asy] unitsize(2cm); defaultpen(0.8); real m=1/3; draw( (0,0)--(1,1)--(6*m,0)--cycle ); draw( ((-1)*(1,m)) -- (3*(1,m)), dashed ); label("$A$",(0,0),NW); label("$B$",(1,1),N); label("$C$",(6*m,0),E); pair D = intersectionpoint( (1,1)--(6*m,0), ((-1)*(1,m)) -- (3*(1,m)) ); dot(D); label("$D$",D,S); [/asy]


[asy] unitsize(2cm); defaultpen(0.8); real m=-1/2; draw( (0,0)--(1,1)--(6*m,0)--cycle ); draw( ((-2)*(1,m)) -- (1*(1,m)), dashed ); label("$A$",(0,0),S); label("$B$",(1,1),NE); label("$C$",(6*m,0),W); pair D = intersectionpoint( (1,1)--(6*m,0), ((-1)*(1,m)) -- (3*(1,m)) ); dot(D); label("$D$",D,S); [/asy]



See Also

2009 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions