2000 AMC 12 Problems/Problem 23
Problem
Professor Gamble buys a lottery ticket, which requires that he pick six different integers from through
, inclusive. He chooses his numbers so that the sum of the base-ten logarithms of his six numbers is an integer. It so happens that the integers on the winning ticket have the same property— the sum of the base-ten logarithms is an integer. What is the probability that Professor Gamble holds the winning ticket?
Solution
The product of the numbers have to be a power of in order to have an integer base ten logarithm. Thus all of the numbers must be in the form
. Listing out such numbers from
to
, we find
are the only such numbers. Immediately it should be noticed that there are a larger number of powers of
than of
. Since a number in the form of
must have the same number of
s and
s in its factorization, we require larger powers of
of those of
. To see this, for each number subtract the power of
from the power of
. This yields
, and indeed the only non-positive terms are
. Since there are only two zeros, the largest number that Professor Gamble could have picked would be
.
Thus Gamble picks numbers which fit , with the first four having already been determined to be
. The choices for the
include
and the choices for the
include
. Together these give four possible tickets, which makes Professor Gamble’s probability
.
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |