1975 USAMO Problems/Problem 3
Revision as of 15:48, 31 December 2008 by Xantos C. Guin (talk | contribs) (added solution, probably needs to be spaced out differently.)
Problem
If denotes a polynomial of degree such that for , determine .
Solution
Let . Clearly, has a degree of .
Then, for , .
Thus, are the roots of .
Since these are all of the roots, we can write as: where is a constant.
Thus,
Plugging in gives:
Finally, plugging in gives:
If is even, this simplifies to . If is odd, this simplifies to .
See also
1975 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |