2007 AMC 12A Problems/Problem 23

Revision as of 08:57, 29 December 2008 by 123456789 (talk | contribs) (Solution)

Problem

Square $ABCD$ has area $36,$ and $\overline{AB}$ is parallel to the x-axis. Vertices $A,$ $B$, and $C$ are on the graphs of $y = \log_{a}x,$ $y = 2\log_{a}x,$ and $y = 3\log_{a}x,$ respectively. What is $a?$

$\mathrm{(A)}\ \sqrt [6]{3}\qquad \mathrm{(B)}\ \sqrt {3}\qquad \mathrm{(C)}\ \sqrt [3]{6}\qquad \mathrm{(D)}\ \sqrt {6}\qquad \mathrm{(E)}\ 6$

Solution

Let $x$ be the x-coordinate of $B$ and $C$, and $x_2$ be the x-coordinate of $A$ and $y$ be the y-coordinate of $A$ and $B$. Then $2\log_ax= y \Longrightarrow a^{y/2} = x$ and $\log_ax_2 = y \Longrightarrow x_2 = a^y = \left(a^{y/2}\right)^2 = x^2$. Since the distance between $A$ and $B$ is $6$, we have $x^2 - x - 6 = 0$, yielding $x = -2, 3$.

However, we can discard the negative root (all three logarithmic equations are underneath the line $y = 3$ and above $y = 0$ when $x$ is negative, hence we can't squeeze in a square of side 6). Thus $x = 3$.

Substituting back, $3\log_{a}x - 2\log_{a}x = 6 \Longrightarrow a^6 = x$, so $a = \sqrt[6]{3}\ \ \mathrm{(A)}$.

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions