1973 USAMO Problems/Problem 2
Problem
Let and
denote two sequences of integers defined as follows:
![$X_0=1$](http://latex.artofproblemsolving.com/c/e/b/cebce4cef53ec8891f6b19b9e15609f8f67e3ce4.png)
![$X_1=1$](http://latex.artofproblemsolving.com/4/c/9/4c98f37726f1b237003a06d40752524a28e99f47.png)
![$X_{n+1}=X_n+2X_{n-1}$](http://latex.artofproblemsolving.com/7/9/f/79f9ae578208dd5fd22233a74eb9958b7fa123db.png)
![$(n=1,2,3,\dots),$](http://latex.artofproblemsolving.com/a/2/7/a27887235fc6fe223896299960f50abedf4113f4.png)
![$Y_0=1$](http://latex.artofproblemsolving.com/7/9/7/79793a5127f0c02da1cd1496fc8a96c10a26232a.png)
![$Y_1=1$](http://latex.artofproblemsolving.com/a/4/9/a49bb97d64368129129763a0d2addd247168134e.png)
![$Y_{n+1}=2Y_n+3Y_{n-1}$](http://latex.artofproblemsolving.com/0/e/7/0e713f61302bc1d06796c423e76fcc2e456b6df5.png)
![$(n=1,2,3,\dots)$](http://latex.artofproblemsolving.com/0/3/8/0382bde36fe67f5296e632643ceb5d774545d3b6.png)
Thus, the first few terms of the sequences are:
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$3$](http://latex.artofproblemsolving.com/7/c/d/7cde695f2e4542fd01f860a89189f47a27143b66.png)
![$5$](http://latex.artofproblemsolving.com/7/9/0/79069377f91364c2f87a64e5f9f562a091c8a6c1.png)
![$11$](http://latex.artofproblemsolving.com/c/6/8/c6878713578626763c38433b3f4c8c2205ad0c15.png)
![$21$](http://latex.artofproblemsolving.com/f/2/5/f25d31faf472ddb4c698a14522fe8125c06f8dd8.png)
![$\dots$](http://latex.artofproblemsolving.com/6/4/6/64683f315744c851898c8d65dace1a8aa31b93ab.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$7$](http://latex.artofproblemsolving.com/e/0/a/e0a0db32027a732ac57d37ef2ae9bb150f65b108.png)
![$17$](http://latex.artofproblemsolving.com/b/7/6/b7616a230c77f0d9a577e5bca01aa06f1c35c457.png)
![$55$](http://latex.artofproblemsolving.com/b/7/9/b79030abeb688469b5ffc2e1c4e37fee225a529e.png)
![$161$](http://latex.artofproblemsolving.com/8/4/0/8403aaee7e752f7fadd7a9beb7ba81262bd41a26.png)
![$487$](http://latex.artofproblemsolving.com/0/d/1/0d11496db9a2cb710532962e58c1db8af55f8728.png)
![$\dots$](http://latex.artofproblemsolving.com/6/4/6/64683f315744c851898c8d65dace1a8aa31b93ab.png)
Prove that, except for the "1", there is no term which occurs in both sequences.
Solution
We can look at each sequence :
![$X$](http://latex.artofproblemsolving.com/6/a/4/6a47ca0fe7cb276abc022af6ac88ddae1a9d6894.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$3$](http://latex.artofproblemsolving.com/7/c/d/7cde695f2e4542fd01f860a89189f47a27143b66.png)
![$5$](http://latex.artofproblemsolving.com/7/9/0/79069377f91364c2f87a64e5f9f562a091c8a6c1.png)
![$3$](http://latex.artofproblemsolving.com/7/c/d/7cde695f2e4542fd01f860a89189f47a27143b66.png)
![$5$](http://latex.artofproblemsolving.com/7/9/0/79069377f91364c2f87a64e5f9f562a091c8a6c1.png)
![$\dots$](http://latex.artofproblemsolving.com/6/4/6/64683f315744c851898c8d65dace1a8aa31b93ab.png)
![$Y$](http://latex.artofproblemsolving.com/c/e/5/ce58e4af225c93d08606c26554caaa5ae32edeba.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$7$](http://latex.artofproblemsolving.com/e/0/a/e0a0db32027a732ac57d37ef2ae9bb150f65b108.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$7$](http://latex.artofproblemsolving.com/e/0/a/e0a0db32027a732ac57d37ef2ae9bb150f65b108.png)
![$1$](http://latex.artofproblemsolving.com/d/c/e/dce34f4dfb2406144304ad0d6106c5382ddd1446.png)
![$7$](http://latex.artofproblemsolving.com/e/0/a/e0a0db32027a732ac57d37ef2ae9bb150f65b108.png)
![$\dots$](http://latex.artofproblemsolving.com/6/4/6/64683f315744c851898c8d65dace1a8aa31b93ab.png)
- Proof that
repeats
:
The third and fourth terms are and
. Plugging into the formula, we see that the next term is
, and plugging
and
, we get that the next term is
. Thus the sequence
repeats, and the pattern is
.
- Proof that
repeats
:
The first and second terms are and
. Plugging into the formula, we see that the next term is
, and plugging
and
, we get that the next term is
. Thus the sequence
repeats, and the pattern is
.
Combining both results, we see that and
are not congruent
when
and
. Thus after the "1", the terms of each sequence are not equal.
See also
1973 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |