2001 USAMO Problems/Problem 2

Revision as of 21:10, 24 September 2008 by Azjps (talk | contribs) (Solution: minor)

Problem

Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2 = BD_1$ and $CE_2 = AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ = D_2P$.

Solution

It is well known that the excircle opposite $A$ is tangent to $\overline{BC}$ at the point $D_2$. (Proof: let the points of tangency of the excircle with the lines $BC, AB, AC$ be $D_3, F,G$ respectively. Then $AB+BD_3=AB + BF=AF = AG = AC + AG=AC + CD_3$. It follows that $2CD_3 = AB + BC - AC$, and $CD_3 = s-b = BD_1 = CD_2$, so $D_3 \equiv D_2$.)

Now consider the homothety that carries the incircle of $\triangle ABC$ to its excircle. The homothety also carries $Q$ to $D_2$ (since $A,Q,D_2$ are collinear), and carries the tangency points $E_1$ to $G$. It follows that $\frac{AQ}{QD_2} = \frac{AE_1}{E_1G} = \frac{s-a}{E_1C + CD_2} = \frac{s-a}{CD_1 + BD_1} = \frac{s-a}{a}$.

[asy] pathpen = linewidth(0.7); size(300); pen d = linetype("4 4") + linewidth(0.6); pair B=(0,0), C=(10,0), A=7*expi(1),O=D(incenter(A,B,C)),D1 = D(MP("D_1",foot(O,B,C))),E1 = D(MP("E_1",foot(O,A,C),NE)),E2 = D(MP("E_2",C+A-E1,NE)); /* arbitrary points */  /* ugly construction for OA */ pair Ca = 2C-A, Cb = bisectorpoint(Ca,C,B), OA = IP(A--A+10*(O-A),C--C+50*(Cb-C)), D2 = D(MP("D_2",foot(OA,B,C))), Fa=2B-A, Ga=2C-A, F=MP("F",D(foot(OA,B,Fa)),NW), G=MP("G",D(foot(OA,C,Ga)),NE); D(OA); D(MP("A",A,N)--MP("B",B,NW)--MP("C",C,NE)--cycle); D(incircle(A,B,C)); D(CP(OA,D2),d); D(B--Fa,linewidth(0.6)); D(C--Ga,linewidth(0.6)); D(MP("P",IP(D(A--D2),D(B--E2)),NNE)); D(MP("Q",IP(incircle(A,B,C),A--D2),SW));  clip((-20,-10)--(-20,20)--(20,20)--(20,-10)--cycle); [/asy]

By Menelaus' Theorem on $\triangle ACD_2$ with segment $\overline{BE_2}$, it follows that $\frac{CE_2}{E_2A} \cdot \frac{AP}{PD_2} \cdot \frac{BD_2}{BC} = 1 \Longrightarrow \frac{AP}{PD_2} = \frac{(c - (s-a)) \cdot a}{(a-(s-c)) \cdot AE_1} = \frac{a}{s-a}$. It easily follows that $AQ = D_2P$. $\blacksquare$

See also

2001 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions