Millennium Problems

Revision as of 16:30, 6 September 2008 by Temperal (talk | contribs) (write lead, basic structure)

The Millenium Problems are a set of seven problems for which the Clay Mathematics Institute offered a <dollar/>7 million prize fund (one million per problem) to celebrate the new millennium in May 2000. The problems all have significant impacts on their field of mathematics and beyond, and were all unsolved at the time of the offering of the prize.

The seven problems are the Birch and Swinnerton-Dyer Conjecture, the Hodge Conjecture, the Navier-Stokes Equations, P versus NP, the Poincaré Conjecture, the Riemann Hypothesis, and the Yang-Mills Theory. In 2003, the Poincaré Conjecture was proven by Russian mathematician Grigori Perelman.

History

Problems

See Also

References

External Links