2008 AMC 10B Problems/Problem 11

Revision as of 16:35, 10 August 2008 by BOGTRO (talk | contribs) (Problem)

Problem

{{Suppose that $(u_n)$ is a serquence of real numbers satifying $u_{n+2}=2u_{n+1}+u_n$,

and that $u_3=9$ and $u_6=128$. What is $u_5$?

(A) 40 (B) 53 (C) 68 (D) 88 (E) 104}}

Solution

{{We konw that $u_6=128$, so we plug in $n=4$ to get $128=2u_5+u_4$. We plug in $n=3$ to get

$u_5=2u_4+9$. Substituting gives

$128=5u_4+18 \rightarrow u_4=22$

This gives $u_5=\frac{128-22}{2}=53$.

Answer B is the correct answer

NOTE: This is my (BOGTRO) solution, not the official one,

and should be ignored in view of a better solution.}}

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions