2004 AIME II Problems/Problem 10
Problem
Let be the set of integers between
and
whose binary expansions have exactly two
's. If a number is chosen at random from
the probability that it is divisible by
is
where
and
are relatively prime positive integers. Find
Solution
A positive integer has exactly two 1s in its binary representation exactly when
for
nonnegative integers. Thus, the set
is equal to the set
. (The second condition ensures simultaneously that
and that each such number less than
is counted exactly once.) This means there are
total such numbers.
Now, consider the powers of mod
:
.
It's clear what the pairs can look like. If one is of the form
(7 choices), the other must be of the form
(7 choices). If one is of the form
(7 choices) the other must be of the form
(6 choices). And if one is of the form
(7 choices), the other must be of the form
(6 choices). This means that there are
total "good" numbers.
The probability is , and the answer is
.
See also
2004 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |