2008 USAMO Problems/Problem 1
Problem
(Titu Andreescu)
Prove that for each positive integer , there are pairwise relatively prime integers
, all strictly greater than 1, such that
is the product of two consecutive integers.
Solutions
Solution 1
We will prove the problem for each nonnegative integer . We wish to show that
for some integer
. We induct on
. For our base case,
, we may let
be positive integer.
For the inductive step, suppose that are pairwise relatively prime integers such that
for some integer
. Let
. Evidently,
. Also,
Since
is odd and relatively prime to
, it follows that
and
are relatively prime, so
is relatively prime to each of
. Finally,
This completes the induction.
Solution 2
Lemma. If is prime such that
, there exists a residue
such that
.
Proof. Let be a multiplicative generator of the nonzero integers mod 3. Set
. Then
, but
, so
.
By Dirichlet's Theorem, there are infinitely many primes congruent to 1 (mod 3). Let be
such primes, and let
be respective residues as described in the lemma. By the Chinese Remainder Theorem, there is a positive integer
that satisfies the relation
for each integer
. Then
Now, for
, take
to be the greatest power of
that divides
, and let
. Since all the
are pairwise relatively prime and are greater than 1, we are done.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
2008 USAMO (Problems • Resources) | ||
First Problem | Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
- <url>Forum/viewtopic.php?t=202909 Discussion on AoPS/MathLinks</url>