2004 AMC 10A Problems/Problem 9

Revision as of 10:46, 23 April 2008 by 1=2 (talk | contribs) (Dat wash wong.)

Problem

In the figure, $\angle EAB$ and $\angle ABC$ are right angles. $AB=4, BC=6, AE=8$, and $AC$ and $BE$ intersect at $D$. What is the difference between the areas of $\triangle ADE$ and $\triangle BDC$?

AMC10 2004A 9.gif

$\mathrm{(A) \ } 2 \qquad \mathrm{(B) \ } 4 \qquad \mathrm{(C) \ } 5 \qquad \mathrm{(D) \ } 8 \qquad \mathrm{(E) \ } 9$

Solution

Let the area of $[ADE]=a$, $[ADB]=b$, $[DBC]=c$.

$[ADE]-[DBC]=a-c=a+b-c-b=[ABE]-[ABC]=\dfrac{8\cdot 4}{2}-\dfrac{6\cdot 4}{2}=4\Rightarrow \boxed{\mathrm{(B)}}$

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions