2005 USAMO Problems
Contents
Day 1
Problem 1
Determine all composite positive integers for which it is possible to arrange all divisors of that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.
Problem 2
Prove that the system has no solutions in integers , , and .
Problem 3
Let be an acute-angled triangle, and let and be two points on side . Construct point in such a way that convex quadrilateral is cyclic, , and and lie on opposite sides of line . Construct point in such a way that convex quadrilateral is cyclic, , and and lie on opposite sides of line . Prove that points , and lie on a circle.