2010 IMO Shortlist Problems/G1

Revision as of 23:07, 17 February 2025 by Yakumoran (talk | contribs) (Created page with "== Problem == (United Kingdom) Let <math>ABC</math> be an acute triangle with <math>D</math>, <math>E</math>, <math>F</math> the feet of the altitudes lying on <math>BC</math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

(United Kingdom) Let $ABC$ be an acute triangle with $D$, $E$, $F$ the feet of the altitudes lying on $BC$, $CA$, $AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P$. The lines $BP$ and $DF$ meet at point $Q$. Prove that $AP = AQ$.

Solution

Let $\measuredangle$ denote directed angles modulo $180^{\circ}$. As $\measuredangle AFC =  \measuredangle ADC = 90^{\circ}$, $AFDC$ is cyclic.

As $APBC$ and $AFDC$ are both cyclic,

$\measuredangle QPA = \measuredangle BPA = \measuredangle BCA = \measuredangle DCA = \measuredangle DFA = \measuredangle QFA$.

Therefore, we see $AFPQ$ is cyclic. Then

$\measuredangle AQP = \measuredangle AFP = \measuredangle AFE = \measuredangle AHE = \measuredangle DHE = \measuredangle DCE = \measuredangle BCA$.

We deduce that $\measuredangle AQP = \measuredangle BCA = \measuredangle QPA$ , which is enough to apply that $\bigtriangleup APQ$ is isosceles with $AP = AQ$.

(Note that with directed angles in place, both the two possible configurations are solved.)

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Resources