2006 AIME I Problems/Problem 1
Problem
In quadrilateral ,
is a right angle, diagonal
is perpendicular to
,
,
, and
. Find the perimeter of
.
Solution 1
From the problem statement, we construct the following diagram:
![[asy] pointpen = black; pathpen = black + linewidth(0.65); pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy]](http://latex.artofproblemsolving.com/f/e/5/fe5ba5b6cc93f6a188115c7f4281a190091a9844.png)
Using the Pythagorean Theorem:
Substituting
for
:
Plugging in the given information:
So the perimeter is
, and the answer is
.
See Also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.