2003 AIME II Problems/Problem 10
Revision as of 20:56, 18 February 2008 by Dgreenb801 (talk | contribs)
Problem
Two positive integers differ by The sum of their square roots is the square root of an integer that is not a perfect square. What is the maximum possible sum of the two integers?
Solution
Call the two integers and , so we have . Square both sides to get . Thus, must be a square, so we have , and . The sum of these two factors is , so they must both be even. To maximize , we want to maximixe , so we let it equal 450 and the other factor 2, but solving gives , which is already a perfect square, so we have to keep going. In order to keep both factors even, we let the larger one equal 150 and the other 6, which gives . This checks, so the solution is 48+108=156.
See also
2003 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |