2024 AMC 12B Problems/Problem 24
Problem 24
What is the number of ordered triples of positive integers, with , such that there exists a (non-degenerate) triangle with an integer inradius for which , , and are the lengths of the altitudes from to , to , and to , respectively? (Recall that the inradius of a triangle is the radius of the largest possible circle that can be inscribed in the triangle.)
Solution
First we derive the relationship between the inradius of a triangle , and its three altitudes . Using an area argument, we can get the following well known result where are the side lengths of , and is the triangle's area. Substituting into the above we get Similarly, we can get Hence, \begin{align}\label{e1} \frac{1}{R}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \end{align}
Note that there exists a unique, non-degenerate triangle with altitudes if and only if are the side lengths of a non-degenerate triangle. With this in mind, it remains to find all positive integer solutions to the above such that from a non-degenerate triangle, and . We do this by doing casework on the value of . Since is a positive integer . Since , , so . The only possible values for are 1, 2, 3.