2024 AMC 12A Problems/Problem 24

Revision as of 19:59, 8 November 2024 by Eevee9406 (talk | contribs) (fix)

Problem

A $\textit{disphenoid}$ is a tetrahedron whose triangular faces are congruent to one another. What is the least total surface area of a disphenoid whose faces are scalene triangles with integer side lengths?

$\textbf{(A) }\sqrt{3}\qquad\textbf{(B) }3\sqrt{15}\qquad\textbf{(C) }15\qquad\textbf{(D) }15\sqrt{7}\qquad\textbf{(E) }24\sqrt{6}$

Solution

Notice that any scalene acute triangle can be the faces of a $\textit{disphenoid}$. As a result, we simply have to find the smallest area a scalene acute triangle with integer side lengths can take on. This occurs with a $4,5,6$ triangle (notice that if you decrease the value of any of the sides the resulting triangle will either be isosceles, degenerate, or non-acute). For this triangle, the semiperimeter is $\frac{15}{2}$, so by Heron’s Formula:

\[A=\sqrt{\frac{15}{2}\cdot\frac{7}{2}\cdot\frac{5}{2}\cdot\frac{3}{2}}\] \[=\sqrt{\frac{15^2\cdot7}{16}}\] \[=\frac{15}{4}\sqrt{7}\]

The surface area is simply four times the area of one of the triangles, or $\boxed{\textbf{(D) }15\sqrt{7}}$.

~eevee9406

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png