Mock AIME 1 2010 Problems/Problem 13

Revision as of 16:11, 11 August 2024 by Thepowerful456 (talk | contribs) (created solution page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Suppose $\triangle ABC$ is inscribed in circle $\Gamma$. $B_1$ and $C_1$ are the feet of the altitude from $B$ to $CA$ and $C$ to $AB$, respectively. Let $D$ be the intersection of lines $\overline{B_1 C_1}$ and $\overline{BC}$, let $E$ be the point of intersection of $\Gamma$ and line $\overline{DA}$ distinct from $A$, and let $F$ be the foot of the perpendicular from $E$ to $BD$. Given that $BD = 28$, $EF = \frac{20 \sqrt{159}}{7}$, and $ED^2 + EB^2 = 3050$, and that $\tan m \angle ACB$ can be expressed in the form $\frac{a \sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers and $b$ is an integer not divisible by the square of any prime, find the last three digits of $a + b + c$.

Solution

$\boxed{372}$.


See Also

Mock AIME 1 2010 (Problems, Source)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15