Tucker circles
The Tucker circles are a generalization of the cosine circle and first Lemoine circle.
Tucker circle
Let triangle be given. is it’s circumcenter, is it’s Lemoine point.
Let homothety centered at with factor maps into .
Denote the crosspoints of sidelines these triangles as
Prove that points and lies on the circle centered at (Tucker circle).
Proof
is the parallelogram.
Denote is antiparallel to
Similarly, is antiparallel to is antiparallel to
is midpoint is the midpoint
Similarly,
Let be the symmedian through
It is known that three symmedians through are equal, so
is homothetic to with center and factor
So segments are tangents to and points of contact are the midpoints of these segments.
Denote the circumcenter of
Therefore
vladimir.shelomovskii@gmail.com, vvsss