2024 IMO Problems/Problem 3

Revision as of 21:35, 16 July 2024 by Youlost thegame 1434 (talk | contribs) (Created page with "Let <math>a_1, a_2, a_3, \dots</math> be an infinite sequence of positive integers, and let <math>N</math> be a positive integer. Suppose that, for each <math>n > N</math>, <m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $a_1, a_2, a_3, \dots$ be an infinite sequence of positive integers, and let $N$ be a positive integer. Suppose that, for each $n > N$, $a_n$ is equal to the number of times $a_{n-1}$ appears in the list $a_1, a_2, \dots, a_{n-1}$.

Prove that at least one of the sequence $a_1, a_3, a_5, \dots$ and $a_2, a_4, a_6, \dots$ is eventually periodic.

(An infinite sequence $b_1, b_2, b_3, \dots$ is eventually periodic if there exist positive integers $p$ and $M$ such that $b_{m+p} = b_m$ for all $m \ge M$.)