1963 AHSME Problems/Problem 3

Revision as of 12:55, 16 July 2024 by Tecilis459 (talk | contribs) (Add problem header)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If the reciprocal of $x+1$ is $x-1$, then $x$ equals:

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ -1\qquad \textbf{(D)}\ \pm 1\qquad \textbf{(E)}\ \text{none of these}$

Solution

We form the equation $x+1=\frac{1}{x-1}$.

Getting rid of the fraction yields: $x^2-1=1$ $\implies$ $x^2=2$ $\implies$ $x=\pm{\sqrt{2}}=\boxed{\text{E}}$

~mathsolver101

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png