2015 IMO Problems/Problem 3
Let be an acute triangle with . Let be its circumcircle, its orthocenter, and the foot of the altitude from . Let be the midpoint of . Let be the point on such that . Assume that the points , , , , and are all different, and lie on in this order.
Prove that the circumcircles of triangles and are tangent to each other.
The Actual Problem
Let be an acute triangle with . Let be its circumcircle, its orthocenter, and the foot of the altitude from . Let be the midpoint of . Let be the point on such that and let be the point on such that . Assume that the points , , , and are all different and lie on in this order. Prove that the circumcircles of triangles and are tangent to each other.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2015 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |