2004 AMC 12A Problems/Problem 8
- The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.
Problem
In the overlapping triangles and sharing common side , and are right angles, , , , and and intersect at . What is the difference between the areas of and ?
Solutions
Solution 0
Looking, we see that the area of is 16 and the area of is 12. Set the area of to be x. We want to find - . So, that would be and . Therefore, $$ (Error compiling LaTeX. Unknown error_msg)[\triangle ADE]-[\triangle DBC]=(16-x)-(12-x)=16-x-12+x= \boxed{\mathrm{(B)}\ 4}$~ MathKatana
=== Solution 1 === Since$ (Error compiling LaTeX. Unknown error_msg)AE \perp ABBC \perp ABAE \parallel BCAA\sim\triangle ADE \sim \triangle CDB\frac{4}{3}4h_{ADE} = 4 \cdot \frac{4}{7} = \frac{16}{7}h_{CDB} = 3 \cdot \frac 47 = \frac {12}7\frac{1}{2} \cdot 8 \cdot \frac {16}7 - \frac 12 \cdot 6 \cdot \frac{12}7 = 4$$ (Error compiling LaTeX. Unknown error_msg)\Rightarrow$$ (Error compiling LaTeX. Unknown error_msg)\boxed{\mathrm{(B)}\ 4}$.
=== Solution 2 === Let$ (Error compiling LaTeX. Unknown error_msg)[X]X[\triangle BEA]=[\triangle ABD]+[\triangle ADE][\triangle BCA]=[\triangle ABD]+[\triangle BDC][\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}ABCDE\overline{AC}\overline{BE}\overline{AC}y = 1.5x\overline{BE}y = -2x + 81.5x = -2x + 83.5x = 8 $$ (Error compiling LaTeX. Unknown error_msg) x = 8 \times \frac{2}{7}$$ (Error compiling LaTeX. Unknown error_msg) = \frac{16}{7}\frac{16}{7}\triangle ADE\triangle ADE\frac{16}{7} \times 8 \times \frac{1}{2}$$ (Error compiling LaTeX. Unknown error_msg) = \frac{64}{7}\triangle BDC4-\frac{16}{7} = \frac{12}{7}\triangle BDC6 \times \frac{12}{7} \times \frac{1}{2} = \frac{36}{7}\frac{64}{7} - \frac{36}{7} = 44Area(\triangle ADE) - Area(\triangle BDC)\triangle ABC\triangle BAE\triangle ADB$.
This means that$ (Error compiling LaTeX. Unknown error_msg)Area(\triangle BAE) - Area(\triangle ABC) = Area(\triangle ADE) - Area(\triangle BDC)Area(\triangle ADB)Area(\triangle BAE) = 0.5 * 4 * 8 = 16$$ (Error compiling LaTeX. Unknown error_msg)Area(\triangle ABC) = 0.5 * 4 * 16 = 12$$ (Error compiling LaTeX. Unknown error_msg)Area(\triangle BDC) - Area(\triangle ADE) = 16 - 12 =\boxed{\mathrm{(B)}\ 4}$
Video Solution
Education, the Study of Everything
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.