1978 AHSME Problems/Problem 20

Revision as of 11:24, 24 March 2024 by Naturalselection (talk | contribs) (See also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 20

If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0,$ then $x$ equals

$\textbf{(A) }{-}1\qquad \textbf{(B) }{-}2\qquad \textbf{(C) }{-}4\qquad \textbf{(D) }{-}6\qquad  \textbf{(E) }{-}8$

Solution

From the equation \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] we add $2$ to each fraction to get \[\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}.\] We perform casework on $a+b+c:$

  • If $a+b+c\neq0,$ then $a=b=c,$ from which $x=\frac{(2a)(2a)(2a)}{a^3}=8.$ However, this contradicts the precondition $x<0.$
  • If $a+b+c=0,$ then $x=\frac{(-c)(-a)(-b)}{abc}=\boxed{\textbf{(A) }{-}1}.$

~MRENTHUSIASM

See also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png