2024 USAMO Problems/Problem 2
Revision as of 21:32, 20 March 2024 by Anyu-tsuruko (talk | contribs) (Created page with "Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\rig...")
Let be finite sets of integers whose intersection is not empty. For each non-empty , the size of the intersection of the sets in is a multiple of the number of sets in . What is the least possible number of elements that are in at least 50 sets?