2024 AIME I Problems/Problem 9
Problem
Let ,
,
, and
be point on the hyperbola
such that
is a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less than
for all such rhombi.
Solution
A quadrilateral is a rhombus if and only if its two diagonals bisect each other and are perpendicular to each other. The first condition is automatically satisfied because of the hyperbola's symmetry about the origin. To satisfy the second condition, we set as the line
and
as
Because the hyperbola has asymptotes of slopes
we have
This gives us
Plugging into the equation for the hyperbola yields
and
By symmetry of the hyperbola, we know that
so we wish to find a lower bound for
This is equivalent to minimizing
. It's then easy to see that this expression increases with
so we plug in
to get
giving
See also
2024 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.